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Abstract

This paper describes extensions of goal-oriented methods for a posteriori error
estimation and control of numerical approximation to a class of highly-nonlinear
problems in computational solid mechanics. An updated Lagrangian formulation
formulation of the dynamic, large-deformation response of structures composed of
strain-rate-sensitive elastomers and elastoplastic materials is developed. To apply
the theory of goal-oriented error estimation, a backward-in-time dual formulation of
these problems is derived, and residual error estimators for meaningful quantities of
interest are established. The target problem class is that of axisymmetric deforma-
tions of layered elastomer-reinforced shells-of-revolution subjected to shock loading.
Extensive numerical results on solutions of representative problems are given. It is
shown that extensions of the theory of goal-oriented error estimation can be devel-
oped and applied effectively to a class of highly-nonlinear, multi-physics problems
in solid and structural mechanics.
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1 Introduction

We revisit a subject addressed nearly a half-century ago by John Argyris:
”Continua and Discontinua”, where some of the early finite element approx-
imations of a large class of nonlinear problems in continuum mechanics were
presented [2]. Our goal here is to bring to the toolkit a new methodology
for problems in nonlinear continuum mechanics: goal-oriented a posteriori er-
ror estimation for highly nonlinear dynamic simulations of the deformation of
submerged bodies subjected to shock loading.

Methods for developing a posteriori estimates of finite element approxima-
tions of linear elliptic boundary-value problems first appeared in the litera-
ture in the late 1970’s, beginning with the work of Ladevèze [12] for elasticity
problems and of Babuška and Rheinboldt [3] on two-point boundary-value
problems and followed in the early 1980’s by extensions to elliptic problems
on two- and three-dimensional domains [4,5,15]. Until the mid 1990’s, except
maybe the work of Gartland [10], virtually all of the methods of error estima-
tion, an essential ingredient in mesh adaptation techniques, were applicable to
global estimates of error in finite element approximations of linear boundary-
value problems. A review of a posteriori error estimation can be found in the
monograph of Ainsworth and Oden [1]. Global estimates for certain classes
of nonlinear elliptic problems were contributed by Verfürth [23] see also [1].
More recently, techniques for developing a posteriori error estimates of so-
called quantities-of-interest which are functionals of solutions of linear PDE’s,
were presented by Oden and Prudhomme [16,17] and Becker and Rannacher
(e.g. [6]). These techniques employ optimal control strategies and involve the
solution of a dual problem in which the quantity of interest appears as data.
A variety of applications of these ideas have appeared since 2000 (e.g. [19–
22]). The paper of Becker and Rannacher [6] appearing in 2001 extended the
dual-based theory of error estimation to nonlinear boundary- and initial-value
problems, and the paper of Oden and Prudhomme [17] extended the theory
further to cover estimation of both modeling and approximation error in 2002.
Further extension of this work to multi-scale modeling methods is described
in a recent report [18].

While the developments to date provide an abstract mathematical framework
for error estimation in highly nonlinear problems, no applications to impor-
tant problems in nonlinear continuum mechanics appear to have been made,
owing to the inherent complexities in such problems. To capture features of
the nonlinear dynamics of solid bodies and structures under shock loading
involves a host of complicated features and has been the focus of research in
computational solid mechanics for many decades (see [14] or the more recent
treatise [7]). The analysis of the evaluation of approximation error of quan-
tities of interest in such applications involves solving first a forward-in-time
problem for the system response, and then a backward-in-time problem for
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the dual solution associated with the particular quantity of interest.

In the present investigation, a posteriori error estimates for key quantities of
interest are derived for a class of complex and highly-nonlinear problems in
computational solid mechanics: the dynamical behavior of a heterogeneous,
layered shells subjected to shock loading. The models considered here involve
axisymmetric deformations of thick bodies-of-revolution undergoing very high
strains and strain rates, and large elastic and inelastic deformations. The tar-
get applications of the methods developed in this investigation is the dynam-
ical behavior of elastomer-reinforced steel shells subjected to high-intensity
shock loading.

Following the introduction, the underlying theory of a posteriori error esti-
mation is given in Section 2. The formulation of a continuum model of the
problem is given in Section 3. Here a framework suitable for goal-oriented
error estimation is presented and algorithms used to compute the solution
of the discretized space and time problem are established. Section 4 presents
the equations of goal-oriented error estimation and the particular solution
technique used. The method of assessing the fidelity of the solution is also dis-
cussed. The geometry and data of the target application problems are given in
Section 5 and Section 6 presents the constitutive equations used in the com-
putational model. Detailed numerical results are presented and discussed in
Section 7. Concluding comments are collected in Section 8.

2 Goal-Oriented A Posteriori Error Estimation and Control

The theory of goal-oriented error estimation and control can be described in
terms of the abstract problem,

Find u ∈ V such that

B(u; v) = F (v) ∀v ∈ V (1)

where B(·, ·) is a semilinear form, nonlinear in the first entry, v is a test
vector, F (·) a linear functional, and V is the space of admissible solutions,
here a Banach space with norm ‖ · ‖V . Of interest is the value of a functional
Q : V → R at solutions u to (1); the quantity of interest. The problem of
determining Q(u) = inf{Q(v) : v ∈ V} subject to (1) is an optimal control
problem characterized by the pair of equations:

Find (u, p) ∈ V × V such that

B(u; v) = F (v) ∀v ∈ V
B′(u; w, p) = Q(u; w) ∀w ∈ V

(2)
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Here

B′(u; w, p) = lim
θ→0

1

θ
[B(u + θw; p)−B(u; p)]

Q′(u; w) = lim
θ→0

1

θ
[Q(u + θw)−Q(u)]

(3)

Problem (2)1 is the dual problem associated with the quantity of interest Q
and the primal problem (1) (or (2)2). The dual problem is thus linear in p,
but coupled to the possibly nonlinear primal problem.

We next consider a family {Vh} of finite-dimensional subspaces of V with
everywhere dense union ⋃

h→0

Vh

generated, for example, through finite element approximations of functions
(vectors) in V . The Galerkin approximation of (2) on a subspace Vh is then

Find (uh, ph) ∈ Vh × Vh such that

B(uh; vh) = F (vh) ∀vh ∈ Vh

B′(uh; wh, ph) = Q(uh; wh) ∀wh ∈ Vh

(4)

The goal is to estimate the approximation error Eh in the target quantity of
interest Q. In [17] (see also [6]), it is shown that to within terms of quadratic
order or higher in the error components eh = u − uh and εh = p − ph, the (a
posteriori) error in the quantity of interest is

Eh = Q(u)−Q(uh) ≈ R(uh, p) (5)

where R(uh, ·) is the residual functional,

R(uh; p) = F (p)−B(uh; p) (6)

We note that the Galerkin approximation ph of p satisfies the orthogonality
condition,

R(uh; ph) = 0 (7)

Various goal-oriented algorithms may be constructed for systematically reduc-
ing the error Eh [19–21]. Our objective is to formulate the field equations of
nonlinear continuum mechanics so that they conform to the structure of (2),
and to then develop goal-oriented methods for a posteriori error estimation
and control of models simulating the nonlinear dynamics of layered shell-like
structures.
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3 Variational Formulation

Basic elements of the formulation and much of our notation are standard.
We use an updated Lagrange formulation of the field equations of nonlinear
continuum mechanics.

3.1 Weak Form of the Primal Problem The forward (primal) problem
for an updated Lagrange formulation of the equations governing the motion
of a material body is characterized as follows:

Find (u,v) ∈ V such that

B((u,v); (z,w)) = F ((z,w)) ∀(z,w) ∈ V (8)

Here V = Z ×W is a product space of admissible displacement-velocity pairs
and B(·; ·) and F (·) are the semilinear and linear forms:

B((u,v); (z,w)) =∫ T

0

∫
Ωt

(ρ
dv

dt
·w + ρ

du

dt
· z− ρv · z + σ : ∇xw) dxdt

+
∫
Ω0

(ρ0v(X, 0) ·w(X, 0) + ρ0u(X, 0) · z(X, 0)) dX (9)

F ((z,w)) =∫ T

0

∫
ΓN

t

g ·w dAdt +
∫
Ω0

[ρ0v0(X) ·w(X, 0) + ρ0u0(X) · z(X, 0)] dX (10)

Here we ignore body forces and consider the motion over a time interval [0, T ]
of a material body occupying a current configuration Ωt ⊂ R at time t, Ω0

being the reference configuration. The energy equation is not considered in its
weak form. In (9) and (10),

ρ = ρ(x, t) is the current mass density

x being the spatial position

of material particles that were located

at position X in the reference configuration

v = v(x, t) the velocity field

u = u(x, t) the displacement field

σ = σ(x, t) the Cauchy stress tensor

∇x = ei
∂

∂xi

the spatial gradient
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3.2 Time-Discretized Formulation The governing equations with ini-
tial conditions for the Updated Lagrangian formulation are presented below

ρJ = ρ0

ρ(X, 0) = ρ0(X)∫
Ωt

ρ
dv

dt
·w + σ : ∇xw dx =

∫
ΓN

t

g ·w dA

v(X, 0) = v0(X)

du

dt
= v

u(X, 0) = u0(X)

ρ
de

dt
= σ : D

e(X, 0) = e0(X)

Here the strong forms of the mass equation, the velocity-displacement relation,
and conservation of energy are assumed. Conservation of momentum is the
only equation considered in its weak form.

The time interval [0, T ] is decomposed into subintervals [tn, tn+1] where the
time step

∆t =
tn+1 − tn

2
tn+ 1

2 ≡ 1

2
(tn+1 + tn)

is determined by the Courant condition. The algorithm used for advancing
the velocity and displacement fields in time is based on the following finite
difference scheme for the acceleration

dv

dt

∣∣∣∣∣
t=tn

≈ vn+ 1
2 − vn− 1

2

tn+ 1
2 − tn−

1
2

A leap frog method is used: the velocities and displacements are computed
half a time step apart. The time-discrete momentum equation is then of the
form∫

Ωtn

ρnvn+ 1
2 ·wndx =

∫
Ωtn

ρnvn− 1
2 ·wndx

+ (tn+ 1
2 − tn−

1
2 )

[∫
ΓN

tn

gn ·wn dA−
∫
Ωtn

σn : ∇xw
n dx

]
(11)

where ρn is calculated from the mass equation

ρnJn = ρ0(X)

The displacement is updated in a similar manner as

un+1 = un + (tn+1 − tn)vn+ 1
2 (12)
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While the energy equation is approximated point-wise using the following
finite difference scheme

ρnen+1 = ρnen + (tn+1 − tn)σn : Dn− 1
2 (13)

and is only used to update the yield stress of the materials. As the name
indicates, during the Lagrangian step the mesh is moved with the material.

Algorithm 1 explicit time algorithm for velocity and displacement

use initial conditions to obtain v
1
2 and u0

for n = 1 to ncycle do
determine ∆t from Courant condition
update stress σn = σn(un,vn− 1

2 , en)

use (11) to compute vn+ 1
2

update energy using (13)
use (12) to compute un+1

end for

The specific applications of this formulation to be considered in Section 5,
6, and 7 also involve contact problems encountered in layered structures in
which layers are not bound together but merely are in physical contact in the
reference configuration.

The layered shells are therefore modeled with a sliding interface between the
layers, with the interface treated as a contact region. The standard treatment
of contact is to assume that the bodies in contact cannot overlap and that the
tractions of the surfaces of the contact region satisfy momentum conservation
at the interface. In the computations, these two conditions impose another set
of nonlinear equations to be coupled to the updated Lagrangian equations of
motion. A comprehensive treatment of contact and implementation may be
found in Belytschko [7].

The contact algorithm does not alter the dual formulation. From the view
point of the elastomeric material, in which the dual solution was computed,
the contact region is merely a different set of traction boundary conditions on
the Neumann boundary.

4 The Dual Variational Formulation

There are two distinct sources of error in our discretized primal problem. One
source arises from the finite difference approximation of the time derivatives
and the second source of error from the finite element approximation of the
solution. This analysis is primarily concerned with the latter. In the following
sections our problem will be placed in a suitable framework for goal-oriented
error estimation as developed by Oden and Prudhomme [17]. The dual problem
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to our primal problem will be established and discretized. Treatment of error
estimation is restricted entirely to the elastomeric layer of the shell structure.
Consider as the primal problem the updated Lagrangian equations formulated
on the elastomer layer, see Figure 2. From this point of view, the remainder
of the computational simulation will merely serve to prescribe boundary con-
ditions.

4.1 Dual Problem Procedures for deriving the dual problem has been
presented in Oden and Prudhomme [16,17] and Becker and Rannacher [6].
Consider a particular quantity of interest characterized by a functional Q,
defined on V :

Q((u,v)) =
∫
ΩT

K(x)uz dx (14)

where K(x) is a kernel function on the deformed region underneath the shock
loading material in the final configuration, ΩT . The kernel function is defined
such that the quantity of interest represents a local average of the vertical
displacement uz over a sub-domain of ΩT . The relevance of this quantity of
interest will become clear when the target problem is presented in Section 5.

Following [17], the dual problem of (8) is given as follows

Find (p,q) ∈ V such that

B′((u,v); (z,w), (p,q)) = Q′((u,v); (z,w)) ∀(z,w) ∈ V (15)

where B′ and Q′ are the derivatives of B and Q, respectively, i.e.

B′((u,v); (z,w), (p,q)) ≡

lim
θ→0

1

θ
[B((u,v) + θ(z,w); (p,q))−B((u,v); (p,q))]

and

Q′((u,v); (z,w)) ≡ lim
θ→0

1

θ
[Q((u,v) + θ(z,w))−Q((u,v))]

For the quantity of interest particular to this problem

Q′((u,v); (z,w)) =
∫
ΩT

K(x)zz(x)dx

Applying the definition of B′ to our semi-linear form

B′((u,v); (z,w), (p,q)) =∫ T

0

∫
Ωt

(ρ
dw

dt
·q+∇xq : δσu : ∇xz+∇xp : δσv : ∇xw−ρw ·p+ρ

dz

dt
·p) dxdt

+
∫
Ωo

(ρow(X, 0) · q(X, 0) + ρoz(X, 0) · p(X, 0)) dX
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Where δσv and δσu are obtained from the Taylor-expansions of the Cauchy
stress:

σij(∇xu + θ∇xz,∇xv + θ∇xw) =σij(∇xu,∇xv) + θ
∂σij

∂(um,n)
zm,n

+ θ
∂σij

∂(vm,n)
wm,n +O(θ2)

with

δσu
ijmn ≡

∂σij

∂(um,n)
δσv

ijmn ≡
∂σij

∂(vm,n)

The explicit form of B′ shows that the constitutive equations for the materials
are intimately tied to the error estimate calculations.

Integrating by parts to transfer the time derivatives from the test functions,
(z,w), to the influence functions, (p,q), the derivative of the semi-linear form
becomes

B′((u,v); (z,w), (p,q)) =∫ T

0

∫
Ωt

(−ρw · dq

dt
− ρz · dp

dt
+∇xq : δσu : ∇xz +∇xp : δσv : ∇xw− ρw · p) dxdt

+
∫
ΩT

(ρw(x, T ) · q(x, T ) + ρz(x, T ) · p(x, T )) dx

(16)

From (16), it is seen that the initial conditions of the dual problem involve
initial conditions of the influence functions at time t = T . This means that
data of the influence functions must be known at time T and the influence
functions are propagated backwards in time. This shows that any algorithm for
computing the error in quantities of interest requires that the primal problem
is first solved forward in time from 0 to T and the dual problem from T to 0;
i.e. the states of the primal problem at all times in [0, T ] must be available to
solve the dual problem.

4.2 Time discretization of dual problem For appropriately chosen
test functions the dual problem may be written as two coupled first-order
PDE’s with conditions given at the final time:

∫
Ωt

(ρw · dq

dt
+∇xp : δσv : ∇xw + ρw · p) dx = 0

q(x, T ) = 0∫
Ωt

(∇xq : δσu : ∇xz− ρz · dp

dt
) dx = 0

p1(x, T ) = p2(x, T ) = 0, p3(x, T ) =
K(x)

ρ

(17)

9



The following time-implicit algorithm is implemented to reduce the amount of
data needed to be stored while managing the results of the forward problem
in coefficients of the dual problem at many time instances. Note that the time
index has been switched from ‘n’ to ‘k’ to emphasize the time step difference
between the explicit primal problem and the implicit dual problem.

Derivatives of the influence functions are approximated as

dq

dt

∣∣∣∣∣
t=tk−

1
2

≈ qk − qk−1

tk − tk−1

dp

dt

∣∣∣∣∣
t=tk−

1
2

≈ pk − pk−1

tk − tk−1

Thus, the time discretized dual problem may be written as

∫
Ω

t
k− 1

2

(
∇xq

k− 1
2 : (δσu)k− 1

2 : ∇xz
k− 1

2 − ρk− 1
2zk− 1

2 · p
k − pk−1

tk − tk−1

)
dx = 0 (18)

∫
Ω

t
k− 1

2

(
ρk− 1

2wk− 1
2 · q

k − qk−1

tk − tk−1
+ ρk− 1

2wk− 1
2 · pk− 1

2

)
dx+

∫
Ω

t
k− 1

2

∇xp
k− 1

2 : (δσv)k− 1
2 : ∇xw

k− 1
2 dx = 0

(19)

where

pk− 1
2 ≡ pk−1 + pk

2

qk− 1
2 ≡ qk−1 + qk

2

The following is the pseudo-code used to implement the dual problem.

Algorithm 2 implicit time algorithm for influence functions

when computing primal problem save:
uk− 1

2 , (δσu)k− 1
2 , (δσv)k− 1

2 , zk− 1
2 , wk− 1

2 , and tk for k = 2, 3, ..., Kf

use final conditions to obtain qKf and pKf , where tKf = T
for k = Kf to 2 by −1 do

solve linear system of equations resulting from (18) and (19)
to compute qk−1 and pk−1

end for

4.3 A Posteriori Error Estimation and Residual Based Refine-
ment Errors in the quantity of interest may be quantified by computation of
the residual [17]. The residual is defined as

R((uh,vh); (z,w)) ≡ F ((z,w))−B((uh,vh); (z,w))
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and the error in the quantity of interest is approximated by

Q((u,v))−Q((uh,vh)) ≈ R((uh1 ,vh1); (p,q))

≈ R((uh1 ,vh1); (ph2 ,qh2))
(20)

where (uh,vh) is the computed solution. For these calculations, bilinear shape
functions are used for the primal solution, (uh1 ,vh1), and second order serendip-
ity elements are used for the dual solution, (ph2 ,qh2). Note that using bilinear
shape functions for both the dual and primal solution would result in a residual
of zero due to the Galerkin orthogonality property.

5 Application to Shock Loaded Layered Shell

The geometry of the problem of interest is given in Figures 2, 3, and 4. A shock-
like pressure loading is applied normal to the entire outside surface of the shell.
The pressure loading data is obtained from an independent simulation. The
time evolution of the pressure loading at various distances from the centerline
along the shell is given in Figure 1; the time evolution of the pressure at radii
not shown may be taken as the linear interpolant.

Figure 1. Time evolution of pressure loading on shell structure.

Three distinct configurations of the shell are considered. In the first configura-
tion, shown in Figure 2, the shell is composed of two layers: the outer layer is
steel and the inner layer is the elastomeric material. As indicated in Figure 1,
the pressure load is applied normal to the entire outer surface of the steel.
The intensity of the loading is largest within a radius of r = 3.49cm from the
centerline. The thickness of the steel is tsteel = 1.27cm and the thickness of the
elastomer is telastomer = 2.54cm. Two interface conditions between the steel
and elastomer are considered: perfectly bonded and frictionless sliding.
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In the second configuration, the layers are reversed, the outer layer being now
made of elastomer and the inner layer of steel (see Figure 3). The pressure load
is applied to the outer surface of the elastomer. Again, the thickness of the
steel is tsteel = 1.27cm and the thickness of the elastomer is telastomer = 2.54cm.
Similar to the first configuration, perfectly bonded and frictionless sliding
interface conditions are considered.

Figure 2. Geometry of the problem of interest for the first configuration of the
layered shell.

Figure 3. Geometry of the problem of interest for the second configuration of the
layered shell.

The final configuration considered is the base configuration, the elastomer
is removed and the shell is composed entirely of steel (see Figure 4). The
thickness of the steel is tsteel = 1.27cm. This configuration will be used as the
basis for comparison of the effect of the elastomeric layer.

Figure 4. Base configuration of shell.
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All geometries are assumed to have a rotational axis of symmetry as illus-
trated. The problems are modeled with a Lagrangian mesh throughout the
domain. The updated Lagrangian equations are solved throughout the mesh.

Among quantities of interest are those that indicate the effectiveness of the
elastomeric layer as a reinforcement of the steel structure. Therefore, the quan-
tity of interest in this investigation has been defined (14) as the displacement
of a region of the layered shell under the shock loading source. This quantity
will be used as a measure of the damage inflicted by the shock loading.

6 Constitutive Equations

The Cauchy stress for each material is decomposed into its dilatational and
deviatoric components

σ = −pI + S, sij = σij + pδij

where p denotes the mechanical pressure. Thermodynamic equilibrium is as-
sumed so that the mechanical pressure equals the thermodynamic pressure
provided by an equation of state.

The shock conditions suggest that an equation of state based on Hugoniot data
is well suited for this problem. Thus, the steel is modeled as a hypoelastic-
plastic material using a Mie-Gruneisen equation of state to model the pressure.

p = ph + ρoΓo(e− eh)

ph = po +
ρoC

2
oη

(1− sη)2
, η = 1− ρo

ρ

eh = eo +
η

2ρo

(ph + po)

(21)

where ph is the Hugoniot pressure, eh is the Hugoniot energy; Γo is the
Gruneisen gamma, Co is the reference sound speed, and s is the slope of
the particle velocity-shock velocity curve.

The deviatoric stress, S, is also obtained from the equation of state. The bulk
modulus is proportional to the partial derivative of pressure with respect to
density at constant internal energy:

K = ρ

(
∂p

∂ρ

)
e

The Poisson ratio, ν, and the bulk modulus, K, are used to formulate the
deviatoric component of the stress:

G =
3K(1− 2ν)

2(1 + ν)
S∇J = GDdev

13



where S∇J is the Jaumman rate of the deviatoric stress tensor and G is the
shear modulus.

Plasticity is modeled following classical J2 flow theory where the yield stress,
σy, is obtained from a Johnson-Cook plasticity model. All material data pa-
rameters are given in Tables 1 and 2.

σy =
(
A + Ben

p

)
(1 + Cln(ėp)) (1− Tm

∗ )

Table 1. Plasticity parameters for steel

A (Pa) B n c m T∗ (K)

0.7922× 109 0.676 0.26 0.014 1.03 1793.0

Here en
p is the effective plastic strain, ėp is the effective plastic strain rate, and

T∗ is the effective temperature defined in terms of the melting temperature,
ambient temperature, and Hugoniot temperature; Tm, Tref , and Th, respec-
tively.

T∗ =
T − Tref

Tm − Tref

, T = Th +
e− eh

cv

Based on the experiments performed at UCSD [13], under shock loading con-
ditions the deviatoric component of stress in the elastomer is insignificant
compared to the pressure. Therefore, the elastomer has been modeled hydro-
dynamically for these simulations, S = 0. A Mie-Gruneisen equation of state
is assumed, equation (21). The parameters Co and s of the Mie-Gruneisen
equation of state are obtained from a graph of the data shown in Figure 5.
The rest of the Mie-Gruneisen parameters are given in Table 2,

Table 2. Mie-Gruneisen EOS parameters

mat ρo ( kg
m3 ) Co(m

s ) s Γo cv( J
kg K) ν

steel 7.85× 103 4.5× 103 1.49 2.17 4.48× 102 0.3

elastomer 1.07× 103 2.503× 103 2.05 1.55 1.173× 103 0.4998

Assuming a hydrodynamic state of stress for elastomer,

σij = −pδij

and neglecting the dependence on∇xv, the stress variation in the dual problem
becomes

δσv
ijmn = 0

δσu
ijmn =

∂σij

∂(um,n)
=

∂p

∂(um,n)
δij =

∂p

∂ρ
· ρo

J2
· Cmnδij
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Figure 5. Elastomer Data

where for an axisymmetric problem

C11 = (F11 F22 u3,3 F33 − F21 F12 u3,3 F33 + F11 F22 − F21 F12) u2,2

+ F11 + F11 u3,3 F33

C22 = (F11 F22 u3,3 F33 − F21 F12 u3,3 F33 + F11 F22 − F21 F12) u1,1

+ F22 u3,3 F33 + F22

C33 = (F11 u2,2 F22 F33 − u2,2 F21 F12 F33 + F11 F33) u1,1

+ u2,1 F12 F33 + u2,2 F22 F33 + u1,2 F21 u2,1 F12 F33

− u2,1 F11 u1,2 F22 F33 + u1,2 F21 F33 + F33

C12 = (F21 F12 u3,3 F33 − F11 F22 u3,3 F33 + F21 F12 − F11 F22) u2,1

+ F21 + F21 u3,3 F33

C21 = (F21 F12 u3,3 F33 − F11 F22 u3,3 F33 + F21 F12 − F11 F22) u1,2

+ F12 u3,3 F33 + F12

C13 = 0 C31 = 0 C23 = 0 C32 = 0

7 Simulation Results

Simulation results and error estimate calculations are presented in this section.
Figure 6 illustrates the sequence of 2-D axisymmetric quadrilateral meshes
used to model the problem and compute error estimates. A uniform mesh
was used for the elastomer and steel directly beneath the region of highest
intensity shock loading; the mesh was grown at 5% away from this region. As
a measure of the element size, N=4, 6, 7, 9, 11, 12 and 13 elements were used
across the thickness of the elastomer.
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Figure 6. Meshes

7.1 Primal Solution Figure 7 presents material plots of a simulation
of the updated Lagrangian equations of motion using a Lagrangian mesh
throughout the domain. The shell is composed entirely of steel and had no
elastomeric layers; this may be considered the base model from which com-
parisons can be made between configurations that contain elastomeric layers.
Figure 8 presents the predicted final stress state of the shell. Shown is de-
viatoric components of the stress, srr, szz, and srz, along with the pressure.
The contours are given in units of Pascal’s ranging from -650 MPa to +550
MPa. The standard sign convention is employed: tension positive, compression
negative, and positive traction on positive element face is positive shear. The
plots indicate that the loading is not localized beneath the region of highest
intensity shock loading. Regions away from the centerline, including the far
edge of the shell, experience large stress states. The contours shown are in
units of Pascal’s.

Figure 7. Results for Primal Problem. Base model. Steel only. top-left: t = 0 µs
top-right: t = 100 µs bottom-left: t = 300 µs bottom-right: t = 500 µs
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Figure 8. Final stress states. Base model. Steel only. top-left: srr top-right: szz

bottom-left: srz bottom-right: pressure

Figure 9 presents material plots of a Lagrangian simulation with the config-
uration taken as steel on top, elastomer on bottom, and a sliding interface
between the steel and elastomer. Figure 10 presents the predicted final stress
state of the shell corresponding to Figure 9. The layers of the shell have sepa-
rated near the centerline. Because of the separation one would expect a final
stress state similar to the base model. However, the contact region near the
outer edge of the shell appears to have mollified the regions of high shear
stress but exacerbated the regions of high radial and axial stress along with
the pressure.

Figure 9. Steel layer on top. Sliding Interface top-left: t = 0 µs top-right: t = 100
µs bottom-left: t = 300 µs bottom-right: t = 500 µs
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Figure 10. Results for Primal Problem. final stress states top-left: srr top-right: szz

bottom-left: srz bottom-right: pressure

Results presented in Figure 11 are for the same configuration as those in
Figure 9 except the interface between the steel and elastomer is modeled as
perfectly bonded. The treatment of the interface condition between elastomer
and steel is not seen to significantly affect the final deformed shape of the hull.
However, Figure 12 shows that the final stress state has significantly changed.
The loading absorbed by the steel directly under the region of highest intensity
shock loading appears to be reduced and loading away from the centerline has
increased.

Figure 11. Steel layer on top. Bonded interface between steel and elastomer. top-left:
t = 0 µs top-right: t = 100 µs bottom-left: t = 300 µs bottom-right: t = 500 µs
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Figure 12. Steel Top. Perfectly Bonded. final stress states top-left: srr top-right: szz

bottom-left: srz bottom-right: pressure

Figure 13 presents the calculations for the shell configuration with the elas-
tomer on top of the steel. The interface between the steel and elastomeric layer
is modeled as frictionless sliding. An onset of a pressure instability in the shell
caused by the contact algorithm combined with the use of reduced integration
is seen at time t = 100 µs. The stress state at late times, Figure 14, shows the
effect of this instability. Simulations results away from the centerline are not
as reliable as the results near the centerline.

Figure 13. Elastomeric layer on top. Sliding interface between steel and elastomer.
top-left: t = 0 µs top-right: t = 100 µs bottom-left: t = 300 µs bottom-right: t =
500 µs
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Figure 14. Elastomeric layer on top. Sliding interface between steel and elastomer.
final stress states top-left: srr top-right: szz bottom-left: srz bottom-right: pressure

The results from the layer configuration with the elastomer on top and the
interface between the shell layers modeled as perfectly bonded are presented in
Figure 15. Notice that the final stress state, Figure 16, is surprisingly similar
to the stress state shown in Figure 12; indicating that the interface between
the layered shell is more significant than the position of the layers.

Figure 15. Elastomeric layer on top. Bonded interface between steel and elastomer.
top-left: t = 0 µs top-right: t = 100 µs bottom-left: t = 300 µs bottom-right: t =
500 µs
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Figure 16. Results for Primal Problem. final stress states top-left: srr top-right: szz

bottom-left: srz bottom-right: pressure

7.2 Dual Solution The dual solution corresponding to the results given
in Figure 9, steel-on-top, sliding interface, are shown in Figures 17, 18, and
19. The specific quantity of interest is the displacement of a region of the
elastomeric layer under the loading of the region of highest shock loading
intensity. Figures 17 and 18 show the radial and axial components of the dual
solution. Time t = 90µs of the axial dual solution illustrates the position of the
region used for the error computation. The magnitude of the axial component
of the dual solution is seen to increase as the integration backwards in time
proceeds.

Figure 17. Axial Component of Dual Solution. Steel layer on top. Sliding interface.
top-left: t = 90 µs top-right: t = 70 µs bottom-left: t = 40 µs bottom-right: t = 0
µs
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Figure 18. Radial Component of Dual Solution. Steel layer on top. Sliding interface.
top-left: t = 90 µs top-right: t = 70 µs bottom-left: t = 40 µs bottom-right: t = 0
µs

The quantity of interest was chosen as the average displacement in the axial
direction, consequently, the radial component of the dual solution is seen to
be an order of magnitude smaller than the axial component. In terms of the
final error estimate calculations, this means that forces and stresses affecting
the radial momentum of the elastomer have a significantly less contribution
to the final error estimate.

Figure 19. Spatial Distribution of Residual. Steel layer on top. Sliding interface. N=
# of mesh cells across thickness of elastomer. top-left: N = 6, top-right: N = 10,
bottom-left: N = 14, and bottom-right: N = 18

Figure 19 plots the spatial distribution of the contributions associated with
each node over the entire time interval to the error in the quantity of interest
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for different meshes. The region where the magnitude of these contributions
is largest indicates where mesh refinement is needed. The regions close to the
region of interest and near the highest intensity loading influence the quantity
of interest the most. Thus mesh refinement only directly underneath the region
of highest shock loading intensity is needed for accurate computations of the
quantity of interest.

Figure 20. Axial Component of Dual Solution. Steel layer on top. Bonded interface.
top-left: t = 90 µs top-right: t = 70 µs bottom-left: t = 40 µs bottom-right: t = 0
µs

Figure 21. Radial Component of Dual Solution. Steel layer on top. Bonded interface.
top-left: t = 90 µs top-right: t = 70 µs bottom-left: t = 40 µs bottom-right: t = 0
µs

Figures 20, 21, and 22 illustrate the dual solution results corresponding to the
steel-on-top configuration of the layered shell with a bonded interface between
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the layers. Figures 20 and 21 are the axial and radial components of the dual
solution. The results are similar to before. The regions near the quantity of
interest and where the highest intensity loading originates require the most
refinement. The majority of the error contributions are a consequence of the
loading.

Figure 22. Spatial Distribution of Residual. Steel layer on top. Bonded interface.
N= # of mesh cells across thickness of elastomer. top-left: N = 6 top-right: N = 10
bottom-left: N = 14 bottom-right: N = 18

Shown in Figure 23 is a graph of the global contributions in space at each time
step to the error in the quantity of interest for both the sliding interface and
bonded interface conditions. The time instances that contribute the most error

Figure 23. Temporal Distribution of Residual. Steel layer on top.

correspond to the loading of the elastomer by the pressure wave. Figure 24
plots the evolution of the final error estimates as a function of time.
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Figure 24. Temporal Evolution of Final Error Estimate. Steel layer on top.

Figures 25, 26, and 27 are the dual solution results corresponding to Figure 13,
elastomer on top, sliding interface. The radial and axial components of the dual
solution are shown in Figures 25 and 26. Note, for this case the dual solution
was only computed for T = 15 µs. Large displacement gradients at late times

Figure 25. Axial Component of Dual Solution. Elastomeric layer on top. Sliding
interface. top-left: t = 13 µs top-right: t = 10 µs bottom-left: t = 7 µs bottom-right:
t = 1 µs

cause numerical instabilities in the dual solution and are the cause of the
time interval restriction. However, the results are similar to those obtained
before. The regions in the mesh where the highest intensity structural loading
originates require the most refinement and the residual is seen to significantly
increase for higher mesh resolutions.
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Figure 26. Radial Component of Dual Solution. Elastomeric layer on top. Sliding
interface. top-left: t = 13 µs top-right: t = 10 µs bottom-left: t = 7 µs bottom-right:
t = 1 µs

Figure 27. Spatial Distribution of Residual. Elastomeric layer on top. Sliding inter-
face. N= # of mesh cells across thickness of elastomer. top-left: N = 6 top-right:
N = 10 bottom-left: N = 14 bottom-right: N = 18

The dual solution results corresponding to Figure 15, elastomer on top, bonded
interface, are shown in Figures 28, 29, and 30. The radial and axial compo-
nents of the dual solution are shown in Figures 28 and 29. Again, the dual
solution was only computed for T = 15 µs. The results are consistent; the axial
component of the dual solution is an order of magnitude larger than the ra-
dial component and regions in the mesh where the highest intensity structural
loading originates contribute significantly to the error.
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Figure 28. Axial Component of Dual Solution. Elastomeric layer on top. Bonded
interface. top-left: t = 13 µs top-right: t = 10 µs bottom-left: t = 7 µs bottom-right:
t = 1 µs

Figure 29. Radial Component of Dual Solution. Elastomeric layer on top. Bonded
interface. top-left: t = 13 µs top-right: t = 10 µs bottom-left: t = 7 µs bottom-right:
t = 1 µs

Figure 30. Spatial Distribution of Residual. Elastomeric layer on top. Bonded inter-
face. N= # of mesh cells across thickness of elastomer. top-left: N = 6 top-right:
N = 10 bottom-left: N = 14 bottom-right: N = 18
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The temporal contributions to the residuals as a function of time for both
sliding and bonded interface conditions are shown in Figures 31 and 32. For
this short time interval the quantity of interest is seen to being highly effected
by the loading throughout the duration of the simulation.

Figure 31. Temporal Distribution of Residual. Elastomeric layer on top.

Figure 32. Temporal Evolution of Final Error Estimate. Elastomeric layer on top.

Figures 33 and 34 show final error estimates corresponding to equation (20).
The error estimate is plotted against the number of degrees of freedom in
the mesh. As expected the error estimates are seen to decrease with mesh
resolution and the error estimates for the configuration with elastomer on top
is seen to have less accumulation of error because of the shorter time interval
that the problem was run on.

The interface condition between the steel and elastomer for the configuration
with steel on top is seen to produce a substantial difference in the rates of
convergence. This may be attributed to the difference in the loading of the
elastomer. For the configuration with elastomer on top, the rates of conver-
gence are roughly the same for both interface conditions. Over the short time
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interval in which error estimates were computed the initial loading for both
interface conditions is approximately the same.

Figure 33. Estimate Error as a function of number of degrees of freedom. Steel layer
on top.

Figure 34. Estimated Error as a function of number of degrees of freedom. Elas-
tomeric layer on top.

8 Conclusions

In summary, a new simulation tool has been developed to study nonlinear dy-
namics and large deformations of shock-loaded structures. The theory of goal
oriented error estimation has been applied to a class of highly nonlinear shock
loaded problems. Material properties of the elastomer were exploited, allowing
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approximations to the Cauchy stress, resulting in a computationally feasible
dual problem for highly complex phenomena. The dual solution was used to
obtain converging error estimates for a meaningful quantity of interest. This
work may be used as a foundation for developing adaptive meshing algorithms
for this class of nonlinear problems.

In this study, extensive numerical calculations were performed on various con-
figurations of layered-shell structures. The primary effect of the elastomer was
to redistribute the regions of high stress concentration through out the steel.
Results also showed that the differences in the final stress state, as compared
to the base model, is dominated by the interface between the layers of the shell;
i.e. the positions of the layer is not significant, but the mechanism that allows
the transfer of energy and momentum between the layers is very important.
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